24 research outputs found

    Rapid IoT device identification at the edge

    Get PDF
    Consumer Internet of Things (IoT) devices are increasingly common in everyday homes, from smart speakers to security cameras. Along with their benefits come potential privacy and security threats. To limit these threats we must implement solutions to filter IoT traffic at the edge. To this end the identification of the IoT device is the first natural step. In this paper we demonstrate a novel method of rapid IoT device identification that uses neural networks trained on device DNS traffic that can be captured from a DNS server on the local network. The method identifies devices by fitting a model to the first seconds of DNS second-level-domain traffic following their first connection. Since security and privacy threat detection often operate at a device specific level, rapid identification allows these strategies to be implemented immediately. Through a total of 51,000 rigorous automated experiments, we classify 30 consumer IoT devices from 27 different manufacturers with 82% and 93% accuracy for product type and device manufacturers respectively

    PRISM: Privacy Preserving Healthcare Internet of Things Security Management

    Get PDF
    Consumer healthcare Internet of Things (IoT) devices are gaining popularity in our homes and hospitals. These devices provide continuous monitoring at a low cost and can be used to augment high-precision medical equipment. However, major challenges remain in applying pre-Trained global models for anomaly detection on smart health monitoring, for a diverse set of individuals that they provide care for. In this paper, we propose PRISM, an edge-based system for experimenting with in-home smart healthcare devices. We develop a rigorous methodology that relies on automated IoT experimentation. We use a rich real-world dataset from in-home patient monitoring from 44 households of People Living With Dementia (PLWD) over two years. Our results indicate that anomalies can be identified with accuracy up to 99% and mean training times as low as 0.88 seconds. While all models achieve high accuracy when trained on the same patient, their accuracy degrades when evaluated on different patients

    MUST, SHOULD, DON'T CARE: TCP Conformance in the Wild

    Full text link
    Standards govern the SHOULD and MUST requirements for protocol implementers for interoperability. In case of TCP that carries the bulk of the Internets' traffic, these requirements are defined in RFCs. While it is known that not all optional features are implemented and nonconformance exists, one would assume that TCP implementations at least conform to the minimum set of MUST requirements. In this paper, we use Internet-wide scans to show how Internet hosts and paths conform to these basic requirements. We uncover a non-negligible set of hosts and paths that do not adhere to even basic requirements. For example, we observe hosts that do not correctly handle checksums and cases of middlebox interference for TCP options. We identify hosts that drop packets when the urgent pointer is set or simply crash. Our publicly available results highlight that conformance to even fundamental protocol requirements should not be taken for granted but instead checked regularly

    Design, implementation and validation of a receiver-driven less-than-best-effort transport

    Get PDF
    LEDBAT++ is a congestion-control algorithm that implements a less-than-best-effort transport service. In this paper we present rLEDBAT, a purely receiver-based mechanism to implement LEDBAT++ for TCP. rLEDBAT enables a receiver to select some incoming traffic as less-than-best-effort, managing the capacity of the downlink. We describe the different mechanisms composing rLEDBAT that enable the execution of the LEDBAT++ congestion control algorithm at the receiver. We have implemented and experimentally tested rLEDBAT. We validate that the mechanisms incorporated by rLEDBAT at the receiver are indeed effective to implement a less-than-best-effort transport service at the receiver, as it performs similarly to the original sender-based LEDBAT++

    The case for retraining of ML models for IoT device identification at the edge

    Get PDF
    Internet-of-Things (IoT) devices are known to be the source of many security problems, and as such they would greatly benefit from automated management. This requires robustly identifying devices so that appropriate network security policies can be applied. We address this challenge by exploring how to accurately identify IoT devices based on their network behavior, using resources available at the edge of the network. In this paper, we compare the accuracy of five different machine learning models (tree-based and neural network-based) for identifying IoT devices by using packet trace data from a large IoT test-bed, showing that all models need to be updated over time to avoid significant degradation in accuracy. In order to effectively update the models, we find that it is necessary to use data gathered from the deployment environment, e.g., the household. We therefore evaluate our approach using hardware resources and data sources representative of those that would be available at the edge of the network, such as in an IoT deployment. We show that updating neural network-based models at the edge is feasible, as they require low computational and memory resources and their structure is amenable to being updated. Our results show that it is possible to achieve device identification and categorization with over 80% and 90% accuracy respectively at the edge

    Protected or porous: a comparative analysis of threat detection capability of IoT safeguards

    No full text
    Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them

    Blocking without breaking: identification and mitigation of non-essential IoT traffic

    No full text
    Despite the prevalence of Internet of Things (IoT) devices, there is little information about the purpose and risks of the Internet traffic these devices generate, and consumers have limited options for controlling those risks. A key open question is whether one can mitigate these risks by automatically blocking some of the Internet connections from IoT devices, without rendering the devices inoperable. In this paper, we address this question by developing a rigorous methodology that relies on automated IoT-device experimentation to reveal which network connections (and the information they expose) are essential, and which are not. We further develop strategies to automatically classify network traffic destinations as either required (i.e., their traffic is essential for devices to work properly) or not, hence allowing firewall rules to block traffic sent to non-required destinations without breaking the functionality of the device. We find that indeed 16 among the 31 devices we tested have at least one blockable non-required destination, with the maximum number of blockable destinations for a device being 11. We further analyze the destination of network traffic and find that all third parties observed in our experiments are blockable, while first and support parties are neither uniformly required or non-required. Finally, we demonstrate the limitations of existing blocklists on IoT traffic, propose a set of guidelines for automatically limiting non-essential IoT traffic, and we develop a prototype system that implements these guidelines

    Revisiting IoT device identification

    No full text
    Internet-of-Things (IoT) devices are known to be the source of many security problems, and as such, they would greatly benefit from automated management. This requires robustly identifying devices so that appropriate network security policies can be applied. We address this challenge by exploring how to accurately identify IoT devices based on their network behavior, while leveraging approaches previously proposed by other researchers. We compare the accuracy of four different previously proposed machine learning models (tree-based and neural network-based) for identifying IoT devices. We use packet trace data collected over a period of six months from a large IoT test-bed. We show that, while all models achieve high accuracy when evaluated on the same dataset as they were trained on, their accuracy degrades over time, when evaluated on data collected outside the training set. We show that on average the models' accuracy degrades after a couple of weeks by up to 40 percentage points (on average between 12 and 21 percentage points). We argue that, in order to keep the models' accuracy at a high level, these need to be continuously updated
    corecore